In vivo evaluation of the bond strength of adhesive 4-META/MMA-TBB bone cement under weight-bearing conditions

Author(s):  
Tomoko Sakai ◽  
Sadao Morita ◽  
Ken-ichi Shinomiya ◽  
Akihiko Watanabe ◽  
Nobuo Nakabayashi ◽  
...  
2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


2020 ◽  
Vol 15 (5) ◽  
pp. 055038
Author(s):  
Sirirat T. Rattanachan ◽  
Nuan La-ong Srakaew ◽  
Paritat Thaitalay ◽  
Oranich Thongsri ◽  
Rawee Dangviriyakul ◽  
...  

2015 ◽  
Vol 30 (1) ◽  
pp. 30-37 ◽  
Author(s):  
Andreas Fottner ◽  
Berthold Nies ◽  
Denis Kitanovic ◽  
Arnd Steinbrück ◽  
Jörg Hausdorf ◽  
...  

2017 ◽  
Vol 32 (2) ◽  
pp. 257-264 ◽  
Author(s):  
Bing Ma ◽  
Zhiguang Huan ◽  
Chen Xu ◽  
Nan Ma ◽  
Haibo Zhu ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Tengjiao zhu ◽  
Huihui Ren ◽  
Ailing Li ◽  
Bingchuan Liu ◽  
Caiyun cui ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tiao Lin ◽  
Xun-Zi Cai ◽  
Ming-Min Shi ◽  
Zhi-Min Ying ◽  
Bin Hu ◽  
...  

Ultrasound (US) has been used to increase elution of antibiotic from an antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC). We aimed to further investigate whether microbubbles-mediated US (US + MB) facilitate elution of vancomycin (VAN) from cylindrical specimens and enhance the activity of the eluted antibiotic againstStaphylococcus aureus(S. aureus) in vitro. The study groups comprised cylindrical bone cement fabricated with VAN (VAN), ALBC using US (VAN + US), and ALBC using MB-mediated US (VAN + US + MB). We also carried out an in vivo study involving the activity of VAN from cylindrical cement implanted in tibiae of New Zealand white rabbits inoculated withS. aureus. We found that (1) in vitro, elution from VAN + US + MB cylinders was significantly higher than from either the VAN or VAN + US specimens; (2) the activity of the eluted VAN from the VAN + US + MB cylinders against planktonicS. aureuswas significantly higher than from either the control or VAN or VAN + US specimens; and (3) in the rabbits, the activity of the eluted VAN from the VAN + US + MB cylinders againstS. aureuswas significantly higher than from either the control or VAN or VAN + US specimens. The present results suggest that VAN-loaded PMMA cement irradiated with MB-mediated US may have a role in controlling prosthetic joint infection.


Author(s):  
Sung Baek Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

2005 ◽  
Vol 284-286 ◽  
pp. 133-136 ◽  
Author(s):  
S. Shinzato ◽  
Takashi Nakamura ◽  
Koji Goto ◽  
Tadashi Kokubo

A new bioactive bone cement (cGBC) consisting of crystallized MgO-CaO-SiO2-P2O5 glass beads and high-molecular-weight polymethyl methacrylate (hPMMA) has been developed to overcome the degradation seen with a previously reported cement (GBC) consisting of MgO-CaO-SiO2-P2O5-CaF2 glass beads and hPMMA. The purpose of the present study was to evaluate the degradation of cGBC using an in vivo aging test, and to compare the degradation of cGBC with that of GBC. Hardened rectangular specimens (20x4x3mm) were prepared from both cements. Their initial bending strengths were measured using the three-point bending method. GBC and cGBC specimens were then implanted into the dorsal subcutaneous tissue of rats, removed after 6 or 12 months, and tested for bending strength. The initial bending strengths (MPa) of GBC and cGBC were 141.9±1.8 and 144.4±2.4, respectively, while at 6 months they were 109.1±2.6 and 114.1±4.9, and at 12 months they were 109.1±3.2 and 113.1±3.3, respectively. Although the difference in initial bending strengths was not significant, the bending strength of cGBC was significantly higher than that of GBC at 6 and 12 months, indicating that cGBC is more resistant to cement degradation. The bending strengths of both GBC and cGBC decreased significantly from 0 to 6 months but did not change significantly thereafter. Thus, degradation of cGBC and GBC does not appear to continue after 6 months. We believe that cGBC and GBC are strong enough for use under weight-bearing conditions and that their mechanical strength (especially that of cGBC) is retained in vivo.


2012 ◽  
Vol 25 (01) ◽  
pp. 28-35 ◽  
Author(s):  
R. D. Montgomery ◽  
M. A. Edmondson ◽  
T. J. Stephens

SummaryObjectives: To describe a novel humeral fixation device, the insertion technique, healing of humeral osteotomies, and clinical outcomes in a caprine model over a six month period.Methods: Fourteen mature female Boer/Nubian cross goats with a mean body weight of 50.7 kg were implanted with a proprietary segmented interlocking nail (SILN) in both humeri. Each goat had one humerus randomly selected for mid-diaphyseal osteotomy.Results: Immediately after surgery all but one goat was able to stand, although none of the goats were weight bearing on the osteotomy limb. During the six month study, clinical lameness was always associated with the osteotomy limb. One month after surgery, lameness for twelve of the goats was grade 2/5 or better. At three months, 11 of the 14 did not exhibit any signs of lameness. On radio-graphic images, notable malalignment of the osteotomy was observed, although all osteotomies went to bone union.Clinical significance: The results of this study suggest that despite misalignment, the SILN maintained adequate osteotomy fixation to achieve bone union in the research model studied, with reduced morbidity and early return to function with bilateral implantation. The SILN used in this study allowed intramedullary fixation of humeral diaphyseal osteotomies with a limited and safe surgical approach.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Carl Johan Tiderius ◽  
Zana K. Hawezi ◽  
Lars E. Olsson ◽  
Leif E. Dahlberg

Abstract Background The dGEMRIC (delayed Gadolinium-Enhanced MRI of Cartilage) technique has been used in numerous studies for quantitative in vivo evaluation of the relative glycosaminoglycan (GAG) content in cartilage. The purpose of this study was to determine the influence of pre-contrast T1 and cartilage thickness when assessing knee joint cartilage quality with dGEMRIC. Methods Cartilage thickness and T1 relaxation time were measured in the central part of the femoral condyles before and two hours after intravenous Gd-DTPA2− administration in 17 healthy volunteers from a previous study divided into two groups: 9 sedentary volunteers and 8 exercising elite runners. Results were analyzed in superficial and a deep weight-bearing, as well as in non-weight-bearing regions of interest. Results In the medial compartment, the cartilage was thicker in the exercising group, in weight-bearing and non-weight-bearing segments. In most of the segments, the T1 pre-contrast value was longer in the exercising group compared to the sedentary group. Both groups had a longer pre-contrast T1 in the superficial cartilage than in the deep cartilage. In the superficial cartilage, the gadolinium concentration was independent of cartilage thickness. In contrast, there was a linear correlation between the gadolinium concentration and cartilage thickness in the deep cartilage region. Conclusion Cartilage pre-contrast T1 and thickness are sources of error in dGEMRIC that should be considered when analysing bulk values. Our results indicate that differences in cartilage structure due to exercise and weight-bearing may be less pronounced than previously demonstrated.


Sign in / Sign up

Export Citation Format

Share Document